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Note 1: ANN architecture for the inversed diagonalization problem:  𝑬𝑬 → 𝑯𝑯 

The neural network is constructed with connections of nodes, which are elements that correspond 

to the neurons of the brain. There are three different types of layers in a given ANN, i.e., the input 

layer, the hidden layers, and the output layer 34. Each layer has nodes and connection weights (Fig. 

S1a). The input data are multiplied by the weight before they reach the nodes of the next layer, which 

is called the weighted sum and is calculated as follows: 

ℎ𝑗𝑗𝑠𝑠 = �𝑤𝑤𝑗𝑗𝑗𝑗𝜉𝜉𝑗𝑗

𝑀𝑀

𝑗𝑗=1

+ 𝑏𝑏𝑗𝑗 

where ℎ𝑗𝑗𝑠𝑠 is the 𝑗𝑗-th parameter is 𝑠𝑠-th hidden layer, and 𝑠𝑠 = 1 denotes the first hidden layer. 𝜉𝜉𝑗𝑗 is 

the input data, 𝑤𝑤𝑗𝑗𝑗𝑗 is the connection weight between the 𝑘𝑘-th data in the previous layer 𝜉𝜉𝑗𝑗 and the 

𝑗𝑗-th data in current layer ℎ𝑗𝑗𝑠𝑠, 𝑏𝑏𝑗𝑗 is the bias acting as an additional factor associated with the storage 

of information. 𝑀𝑀 is the total number of nodes in the hidden layer. Finally, the 𝑗𝑗-th node takes the 

weighted sum ℎ𝑗𝑗𝑠𝑠 into the activation function in the node and yields its output: 

ℋ𝑗𝑗
𝑠𝑠 = 𝑓𝑓�ℎ𝑗𝑗𝑠𝑠� 

Many activation functions can be chosen in each layer that determine the behavior of nodes. The data 

generated via the procedure stated above are the input of the next layer. Based on the preassigned 

number of hidden layers and activation functions, properly chosen weights can construct ANNs for 

mailto:hbuljan.phy@pmf.hr


the solution of the 𝐸𝐸 → 𝐻𝐻 problem. More precisely, here we address the inverse problem of matrix 

diagonalization: for a given the spectrum 𝐸𝐸 (energies or propagation constants here denoted with 𝛽𝛽), 

what the matrix 𝐻𝐻 (Hamiltonian) should be to possess such a spectrum, subject to constraints; the 

only constraint used here is for the Hamiltonian to have nearest neighbor coupling, or in other words, 

we demand the matrix to have only 3-diagonal terms. 

The process to adjust weights on every node is the training of ANNs. The backpropagation 

algorithm provides a systematic method to determine the error and further adjust the weights of the 

hidden nodes. Back-propagation means that the data move backward from the output layer to the input 

layer. We first prepare a set of input‒output data as the training data. The evaluation of errors in output 

data then feedbacks the adjustment of weights along propagation 34. 

 
Fig. S1 An ANN architecture for reversed calculation of 𝑬𝑬 → 𝑯𝑯. (a) The ANN architecture for coupling 

array calculations composed of an input layer (𝐵𝐵 array), a number of hidden layers and an output layer (coupling 

array). (b) Demonstration of mode array calculation via ANNs. (b1) Top panel is the sketch of eigenvalue 

distribution 𝐵𝐵 and corresponding eigenmodes |𝜑𝜑𝑖𝑖⟩. The bottom panel shows couplings between sites calculated 

by ANNs. 𝑇𝑇 is the coupling array with total lattice sites 𝑁𝑁 = 9. (b2) has the same layout as (b1) but with 

different preassigned eigenvalue differences. 𝛾𝛾𝐵𝐵 is the figure of merit to test the effectiveness of our ANN 

method as defined in the main text. 

To solve a specific inverse problem of 𝐸𝐸 → 𝐻𝐻, we write down the following procedure to establish 

and evaluate ANNs: 

1) We first generate the input‒output data via a tight-binding model and diagonalization of the 

corresponding Hamiltonian, Φ†𝐻𝐻Φ = 𝐸𝐸 . To simplify and obtain similar eigenmode distributions, 

eigenvalue (𝐵𝐵) arrays and coupling (𝑇𝑇) arrays are set as input and output layers, where 𝑇𝑇 satisfies the 

inversion symmetry. We generate 800 sets of input‒output data for training. 



2) The built-in program in MATLAB is used to establish and train ANNs. We have 4 hidden layers, 

and the nodes on layers are set to be [16 16 16 10]. Since the lattices have 𝑁𝑁 = 8 sites in the main text, 

the numbers of input (𝐵𝐵) and output data (𝑇𝑇) are 8 and 7, respectively. 

3) After training, we send a preassigned spectrum 𝐵𝐵 = [𝛽𝛽1, … ,𝛽𝛽8]  to the ANNs and obtain the 

couplings array 𝑇𝑇 = [𝑡𝑡1, … , 𝑡𝑡7] as the output. The tight-binding Hamiltonian can be formulated based 

on the output data. 𝛾𝛾𝐵𝐵  defined in the main text can evaluate the effectiveness of the 𝐸𝐸 → 𝐻𝐻 deep 

learning process (noted in Fig. S1 and Fig. S2). 

Moreover, systems with different total lattice sites 𝑁𝑁 can also be considered. Here, we briefly 

show the output data and 𝛾𝛾𝐵𝐵 when 𝑁𝑁 = 9 (Fig. S1b) and 𝑁𝑁 = 10 (Fig. S2). 

 

Fig. S2. Demonstration of difference in two preassigned mode arrays calculated via ANNs for 𝑵𝑵 = 𝟏𝟏𝟏𝟏. 

Figure S2 has the same layout as Fig. S1b. 

Note 2: Construction and analysis of synthetic mode dimensions 

 Here we follow the derivation describing wiggling waveguides outlined in Ref 20, which is done 

in the vector potential gauge to describe the wiggling of the waveguides (in the main text we use the 

scalar potential gauge). The light traveling through the photonic lattice can be generally described by 

the paraxial Schrödinger equation: 

𝑖𝑖
𝜕𝜕
𝜕𝜕𝜕𝜕
𝜓𝜓(𝑥𝑥, 𝑦𝑦, 𝜕𝜕) = −

1
2𝑘𝑘0

∇2𝜓𝜓(𝑥𝑥,𝑦𝑦, 𝜕𝜕) −
𝑘𝑘0Δ𝑛𝑛(𝑥𝑥,𝑦𝑦, 𝜕𝜕)

𝑛𝑛0
𝜓𝜓(𝑥𝑥,𝑦𝑦, 𝜕𝜕)                     (S1) 

where 𝜓𝜓(𝑥𝑥,𝑦𝑦, 𝜕𝜕) is the complex amplitude of the linearly polarized electric field of the probe beam 

and 𝜕𝜕 is the propagation direction, 𝑘𝑘0 = 2𝜋𝜋𝑛𝑛0 𝜆𝜆⁄  is the wavenumber in the medium, and 𝜆𝜆 and 𝑛𝑛0 

are the wavelength of the probe beam in vacuum and the unperturbed refractive index of the crystal, 

respectively. Here Δ𝑛𝑛(𝑥𝑥,𝑦𝑦, 𝜕𝜕) denotes the z-modulated waveguide arrays caused by refractive index 



change in the crystal. The z-direction wiggling of waveguide arrays is embodied in 

𝑉𝑉(𝑥𝑥,𝑦𝑦, 𝜕𝜕) = −
𝑘𝑘0Δ𝑛𝑛(𝑥𝑥,𝑦𝑦, 𝜕𝜕)

𝑛𝑛0
= −

𝑘𝑘0
𝑛𝑛0
�Δ𝑛𝑛𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠(𝑥𝑥 − 𝐷𝐷𝑛𝑛 − 𝑅𝑅𝑠𝑠𝑖𝑖𝑛𝑛(Ω𝜕𝜕 + 𝜃𝜃),𝑦𝑦, 𝜕𝜕)
𝑁𝑁

𝑛𝑛=1

, 

where Δ𝑛𝑛𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠(𝑥𝑥) is the profile of a single waveguide, 𝐷𝐷𝑛𝑛 = ∑ 𝑑𝑑𝑖𝑖𝑛𝑛−1
𝑖𝑖=1 ; 𝑅𝑅,Ω and 𝜃𝜃 are the amplitude, 

wiggling frequency, and the initial phase of the oscillation of waveguides, respectively. Then, Eq. S1 

can be written as 

𝑖𝑖
𝜕𝜕
𝜕𝜕𝜕𝜕
𝜓𝜓(𝑥𝑥,𝑦𝑦, 𝜕𝜕) = 𝐻𝐻𝜓𝜓(𝑥𝑥, 𝑦𝑦, 𝜕𝜕), 𝐻𝐻 = −

1
2𝑘𝑘0

∇2 + 𝑉𝑉(𝑥𝑥,𝑦𝑦, 𝜕𝜕).                    (S2) 

With the following substitution, 𝑥𝑥′ = 𝑥𝑥 − 𝑅𝑅𝑠𝑠𝑖𝑖𝑛𝑛(Ω𝜕𝜕 + 𝜃𝜃),𝑦𝑦′ = 𝑦𝑦, 𝜕𝜕′ = 𝜕𝜕, we can obtain 

𝑖𝑖
𝜕𝜕
𝜕𝜕𝜕𝜕
𝜒𝜒 = −

1
2𝑘𝑘0

(∇ + 𝑖𝑖𝑨𝑨)2𝜒𝜒 +
𝑘𝑘0Δ𝑛𝑛
𝑛𝑛0

𝜒𝜒                                              (S3) 

where 𝜒𝜒 = 𝜓𝜓′exp (−𝑖𝑖∫ 1
2
𝑘𝑘02𝑅𝑅2Ω2 cos2(Ω𝜕𝜕 + 𝜃𝜃)𝑑𝑑𝜕𝜕), 𝑨𝑨 = −𝑘𝑘0𝑅𝑅Ω𝑐𝑐𝑐𝑐𝑠𝑠(Ω𝜕𝜕 + 𝜃𝜃)𝑥𝑥� . Under the tight-

binding approximation and a Peierls substitution, Eq. S3 leads to the discrete Hamiltonian 

𝐻𝐻𝑊𝑊𝐴𝐴 (𝜕𝜕) = �𝑡𝑡𝑛𝑛 exp(𝑖𝑖𝜙𝜙𝑛𝑛) 𝑐𝑐𝑛𝑛+1
† 𝑐𝑐𝑛𝑛

𝑁𝑁−1

𝑛𝑛=1

+ 𝐻𝐻. 𝑐𝑐. ,                                        (S4) 

where 𝜙𝜙𝑛𝑛 = ∫ 𝑨𝑨𝑑𝑑𝑛𝑛
0 𝑑𝑑𝑥𝑥 = −𝑑𝑑𝑛𝑛𝑘𝑘0𝑅𝑅Ω cos(Ω𝜕𝜕 + 𝜃𝜃), 𝑐𝑐𝑛𝑛 is the annihilation operator on the 𝑛𝑛th site, and 

𝑡𝑡𝑛𝑛 is the coupling coefficient illustrated in main text Fig. 2. By using a unitary transformation 𝑐𝑐𝑛𝑛 =

𝑎𝑎𝑛𝑛 exp(−𝑖𝑖𝐷𝐷𝑛𝑛𝑘𝑘0𝑅𝑅Ω cos(Ω𝜕𝜕 + 𝜃𝜃)), the wiggling Hamiltonian in the vector potential gauge 𝐻𝐻𝑊𝑊𝐴𝐴 (𝜕𝜕) (Eq. 

S4) can be separated into two parts 𝐻𝐻0 + 𝐻𝐻1(𝜕𝜕): 

𝐻𝐻0 = �𝑡𝑡𝑛𝑛𝑎𝑎𝑛𝑛+1
† 𝑎𝑎𝑛𝑛 + 𝐻𝐻. 𝑐𝑐.

𝑁𝑁−1

𝑛𝑛=1

,       𝐻𝐻1(𝜕𝜕) = �𝐷𝐷𝑛𝑛𝑘𝑘0Ω2𝑅𝑅𝑠𝑠𝑖𝑖𝑛𝑛(Ω𝜕𝜕 + 𝜃𝜃)
𝑁𝑁

𝑛𝑛=1

𝑎𝑎𝑛𝑛
†𝑎𝑎𝑛𝑛 + 𝐻𝐻. 𝑐𝑐.        (S5) 

which is exactly the wiggling Hamiltonian in the scalar potential gauge used in the main text (Eq. 3). 

In the main text, we have for convenience centered the zero point of the scalar potential term 𝐻𝐻1(𝜕𝜕) 

in the central point of the lattice 𝐷𝐷𝑁𝑁 2⁄ . It is evident that the dynamics is equivalent in the vector 

potential gauge and in the scalar potential gauge, as expected.  

Now we address the lattice with equal spacing of eigenvalues in synthetic space. If 𝑡𝑡𝑛𝑛 in Eq. S5 

or Eq. 4 of the main text satisfies the coupling distribution of the 𝐽𝐽𝑥𝑥  matrix, with 𝑡𝑡𝑛𝑛+𝑗𝑗−1 = 𝑝𝑝𝑛𝑛 =

𝑝𝑝
2 �𝑗𝑗 − 𝑛𝑛�𝑗𝑗 + 𝑛𝑛 + 1 , 𝑝𝑝  is a constant value, 𝑗𝑗 = (𝑁𝑁 + 1) 2⁄  , 𝑛𝑛 = −𝑗𝑗,−𝑗𝑗 + 1, … , 𝑗𝑗 − 1, 𝑗𝑗 ,  then, we 

can have an analytic expression of Φ𝐴𝐴
†(𝐻𝐻0 + 𝐻𝐻1(𝜕𝜕))Φ𝐴𝐴: 



ℋ = � �(𝑝𝑝𝑚𝑚 𝑝𝑝⁄ )𝑑𝑑𝑚𝑚𝑅𝑅Ω2 cos(Ω𝜕𝜕 + 𝜃𝜃) 𝑏𝑏𝑚𝑚+1
† 𝑏𝑏𝑚𝑚 + 𝐻𝐻. 𝑐𝑐. �

𝑁𝑁−1

𝑚𝑚=1

+ � 𝑝𝑝𝑝𝑝𝑏𝑏𝑚𝑚
† 𝑏𝑏𝑚𝑚

𝑁𝑁

𝑚𝑚=1

             (S6) 

where 𝑏𝑏𝑚𝑚
† (𝑏𝑏𝑚𝑚)  is the creation (annihilation) operator on the 𝑝𝑝 -th mode in synthetic space 20. 

Moreover, the diagonal term ∑ 𝑝𝑝𝑛𝑛𝑏𝑏𝑚𝑚
† 𝑏𝑏𝑚𝑚𝑁𝑁

𝑚𝑚=1   (Fig. S3a1) can be removed by 𝑢𝑢𝑚𝑚 =

𝑏𝑏𝑚𝑚 exp(𝑖𝑖Ω𝑝𝑝𝜕𝜕) ,Ω = 𝑝𝑝 substitution. With the fast-rotating wave approximation, 

ℋ′ = � �(𝑝𝑝𝑚𝑚 2𝑝𝑝⁄ )𝑑𝑑𝑚𝑚𝑅𝑅Ω2𝑒𝑒𝑖𝑖𝑖𝑖𝑢𝑢𝑚𝑚+1
† 𝑢𝑢𝑚𝑚 + 𝐻𝐻. 𝑐𝑐. �

𝑁𝑁−1

𝑚𝑚=1

                                 (S7) 

Therefore, the 𝐽𝐽𝑥𝑥  lattice can be constructed in synthetic space where modes only have couplings 

between nearest neighbors (Fig. S3a2). For mode arrays with unequal spacing, even though, we do not 

find an analytical expression equivalent to Eq. S6, the diagonal term can still be partially removed by  

𝑢𝑢𝑚𝑚 = 𝑏𝑏𝑚𝑚 exp(𝑖𝑖Ω𝑝𝑝𝜕𝜕) ,Ω = 𝑝𝑝 substitution (Fig. S3b). Such array can realize the mode confinement 

due to the coupling blockade shown in Fig. S3b3. 

 
Fig. S3 Illustration of mode dynamics in different mode arrays. (a1-a3) Illustration of mode arrays 

with equal spacing of eigenvalues 𝛽𝛽𝑚𝑚. (a1) Distribution of diag(Φ𝐴𝐴
†𝐻𝐻0Φ𝐴𝐴) before (solid blue lines) 

and after (dashed red lines) elimination of the potential difference between eigenmodes by using a 

proper rotating wave frame. (a2) The off-diagonal values of Φ𝐴𝐴
†𝐻𝐻1(𝜕𝜕)Φ𝐴𝐴  indicate the couplings 

between eigenmodes in SD; we plot the normalized absolute values of the complex matrix elements. 



(a3) Mode evolution in SD. The orange circle indicates the initially excited mode. (b1-b3) have the 

same layout as (a1-a3), except that they are for the mode arrays with outlying edges, showing that the 

excited mode is well confined in SD. The modes in the squared region indicated in (b2) are mutually 

coupled, and the shaded zones in (b3) show the coupling blockade between the edge and bulk modes 

in SD. 

 

Note 3: Parameter tuning and phase extraction used in experiment 

The coupling 𝑐𝑐  in the tight-binding mode and waveguide spacing 𝑑𝑑  in the simulation and 

experiment obey an exponential relation: 𝑑𝑑 = −𝑑𝑑0 ln(𝑐𝑐 𝑐𝑐0⁄ ) + 𝐶𝐶0, where 𝑑𝑑 and 𝑐𝑐 are the distance 

and coupling between two waveguides, respectively. The parameters 𝑑𝑑0, 𝑐𝑐0, 𝐶𝐶0  are constants 

employed in the simulation and experiment to establish the correspondence between couplings and 

waveguide distance. Specifically, in the present experiment, the values of 𝑑𝑑0 and 𝐶𝐶0 are set to 2.5 ∗

10−6𝑝𝑝 and 12.4 ∗ 10−6𝑝𝑝. Since the minimum spacing between waveguides that we can write in the 

experiment is approximately 14.9𝜇𝜇𝑝𝑝, we set 𝑐𝑐0 = 5.48 for the mode arrays with equal spacing and 

𝑐𝑐0 = 11.42 for mode arrays with outlying edges to have the minimum spacing between waveguides 

in the experiment. Therefore, the waveguide spacing is Δ𝑑𝑑 = [15.90, 15.25, 14.99, 14.90, 14.99, 15.25, 

15.90] 𝜇𝜇𝑝𝑝 in mode arrays with equal spacing and Δ𝑑𝑑 =[17.99, 17.18, 15.77, 14.90, 15.77, 17.18, 

17.99] 𝜇𝜇𝑝𝑝 in mode arrays with outlying edges. Both have the minimum spacing between waveguides 

min (Δ𝑑𝑑) = 14.9𝜇𝜇𝑝𝑝 , which guarantees the maximum coupling strength along propagation for the 

mode arrays in the experiment. The refractive index change of the waveguide is around Δ𝑛𝑛 = 3.6 ∗

10−4.  

On the other hand, to analyze long-distance light evolution in synthetic dimension (SD), we need 

to extract both the intensity and phase distributions of the output beams in the experiment, and then 

use them as the input to the next section of the waveguide arrays. Therefore, we apply the Fourier 

transform of the interferogram of output beams 47. Assume we have the interferogram of the beams 

shown in Fig. S4a, which can be described by 𝐼𝐼(𝑥𝑥,𝑦𝑦) = 𝐼𝐼0(𝑥𝑥,𝑦𝑦) + 𝐼𝐼1(𝑥𝑥,𝑦𝑦) + 𝐼𝐼1∗(𝑥𝑥, 𝑦𝑦) , where 

𝐼𝐼1(𝑥𝑥, 𝑦𝑦) = ℐ(𝑥𝑥, 𝑦𝑦) exp[𝑖𝑖𝜙𝜙(𝑥𝑥, 𝑦𝑦)] and ℐ(𝑥𝑥,𝑦𝑦) and 𝜙𝜙(𝑥𝑥,𝑦𝑦) are the amplitude and phase distributiuons, 

respectively. The Fourier transform of 𝐼𝐼(𝑥𝑥,𝑦𝑦)  yields three parts ℱ�𝐼𝐼(𝑥𝑥,𝑦𝑦)� = 𝐺𝐺0(𝑘𝑘) + 𝐺𝐺+(𝑘𝑘) +

𝐺𝐺−(𝑘𝑘)  denoted in Fig. S4a2, where 𝐺𝐺+(𝑘𝑘)  contains the phase of the output beams. The inverse 



Fourier transform of 𝑔𝑔+(𝑥𝑥) = ℱ−1�𝐺𝐺+(𝑘𝑘)� uncovers the phase distribution of 𝐼𝐼(𝑥𝑥,𝑦𝑦). Moreover, 

𝑔𝑔+(𝑥𝑥) = 𝑔𝑔+0(𝑥𝑥) exp �𝑖𝑖 �𝜙𝜙𝑝𝑝(𝑥𝑥) + 𝜙𝜙𝑟𝑟(𝑥𝑥)��                                                 (S9) 

where 𝑔𝑔+0(𝑥𝑥) is the intensity component, 𝜙𝜙𝑝𝑝(𝑥𝑥) is the phase carried by the probe beam and 𝜙𝜙𝑟𝑟(𝑥𝑥) 

is the phase of the reference beam. Notably, since only the phase of the probe beam is necessary, the 

interferogram between a broad beam (quasi-plane wave) and the reference beam  

 
Fig. S4 Demonstration of phase extraction via the Fourier transform method. (a) An example to illustrate 

the Fourier transform method. (a1) A sample intensity distribution 𝐼𝐼(𝑥𝑥,𝑦𝑦) as obtained from interferogram. (a2) 

The Fourier transform of 𝐼𝐼(𝑥𝑥,𝑦𝑦). (b) The interferogram of an output beam obtained in the experiment. (b1, b2) 

The interferograms obtained with a reference beam interfering with the output beam (b1) and a quasi-plane-

wave beam (b2). (b3) The extracted phase distribution of the probe beam. 

Note 4: Illustration of the cw-laser writing and cascade probing method 

As we stated in the main text, the amplitude 𝑅𝑅  and wiggling frequency Ω of writing beams 

(532nm) can be tuned by the spatial light modulator (SLM), when the light is ordinarily polarized, as 

shown in Fig. 3a. However, limited by the length of the crystal 𝐿𝐿 = 20𝑝𝑝𝑝𝑝, we need to truncate the 

writing beams into several parts to write the waveguide arrays by section. The length of each part is 

20𝑝𝑝𝑝𝑝 which fits the long side of the crystal (Fig. 3a). For section 1 denoted in Fig. 3a, we generate 

the first part of the writing beams via the SLM. The waveguide arrays can be written into the crystal 

subsequently due to the ‘memory effect’ of the nonlinear photorefractive crystal. The position of the 

writing beams is precisely controlled by SLM.  

Once the lattice is written in the crystal, the probe beam is generated by the SLM. The polarization 

of the probe beam with extraordinary polarization is adjusted by a halfwave plate mounted before the 

nonlinear crystal. Both the intensity and phase distribution of the probe beam are captured at the output 



in the experiment. In section 2, the second part of the writing beams is applied to write the subsequent 

section of the waveguide array. The intensity and phase distributions of the output beam captured in 

section 1 are properly duplicated by SLM and serve as the input beam of section 2 (Fig. 3a). Therefore, 

although light in each step propagates only 20mm, the output of section 2 has effectively 40 mm 

propagation distance, thanks to the cascade probing method described above. The propagation distance 

of light can be further elongated to 80 mm within the allowed error range caused by the extraction-

duplication process via SLM. 

Figure S4 shows the results obtained with the cascade probing method in the experiment. The 

intensity and phase distributions of the output beam at 𝜕𝜕 = 20𝑝𝑝𝑝𝑝 match the input beam of section 2 

(𝜕𝜕 = 40𝑝𝑝𝑝𝑝) duplicated by SLM. The consistency between the output beam and the following input 

beam guarantees the effectiveness of the cascade probing method. 

 
Fig. S5 Experimental results of the cascade probing method, showing input‒output relation of the probe 

beam for the mode array with outlying edges. The arrows show the process of the extraction-duplication for 

recycling the probe beam. (a) to (d) are the intensity and phase distribution of the input and output beams in 

four sections at 𝜕𝜕 = 20, 40, 60, 80𝑝𝑝𝑝𝑝. Each section of the waveguide arrays is 20 𝑝𝑝𝑝𝑝 long, corresponding to 

the crystal length. 

Note 5: Simulations of single mode excitation using the continuous model 

The simulations of single mode excitation are governed by the paraxial Schrödinger equation (Eq. 

S1). We first construct the lattice by establishing the relation between 𝐷𝐷 and 𝑇𝑇, where the waveguide 

spacing is Δ𝑑𝑑 = [15.90, 15.25, 14.99, 14.90, 14.99, 15.25, 15.90] 𝜇𝜇𝑝𝑝 in mode arrays with equal 



spacing (Fig. S6a) and Δ𝑑𝑑 =[17.99, 17.18, 15.77, 14.90, 15.77, 17.18, 17.99] 𝜇𝜇𝑝𝑝 in mode arrays with 

outlying edges (Fig. S6b), as stated in Note 3. Then, one mode is programmed as the probe beam. By 

numerically solving Eq. S1 with the beam propagation method, the sideview of light propagation in 

real space is obtained numerically and shown in the top row of Fig. S6. By calculating 𝜂𝜂𝑖𝑖(𝜕𝜕), the mode 

evolution in the continuous model is plotted in SD (bottom row of Fig. S6). The simulation parameters 

are taken from experiments. The agreement between Fig. 3 and Fig. S6 confirms the effectiveness of 

the tight-binding model for the discussion of mode evolution in SD. 

 
Fig. S6 Simulations of single mode excitation using the continuous model. (a) Light evolving in real space 

(top row) and SD (bottom row). Yellow circles marked in the left column indicate the excited modes. (b) have 

the same layouts as (a) but for differently selected mode excitations in different mode arrays: (a) are for mode 

arrays with equal spacing. (b) are for mode arrays with outlying edges corresponding to Fig. 3. The shaded 

zones indicate the coupling blockade. The propagation distance at the vertical line in (a) and (b) are 𝑍𝑍 = 40𝑝𝑝𝑝𝑝 

and 𝑍𝑍 = 80𝑝𝑝𝑝𝑝. 

Section 6: Modification of trivial and nontrivial SSH structures by ANNs. 

The Su-Schrieffer-Heeger (SSH) model features fixed intra-cell (𝑡𝑡intra) and inter-cell (𝑡𝑡inter) 

couplings, resulting in two SSH structures with distinct topological properties (Fig. S7a1 and b1). In 

momentum space, the eigenvalues of bulk modes in the standard SSH model are not equally spaced, 

presenting a challenge for mode switching in SD. To address this, ANNs are employed to adjust the 

coupling coefficients in real space, yielding an equal-spacing eigenvalue distribution with 



approximately linear dispersion shown in Fig. S7a3 and Fig. S7b3 for the topological trivial and 

nontrivial SSH structures, respectively. Importantly, such modification does not alter the topological 

properties of the modes, as the gap remains unclosed and the topological invariant remains unchanged 

(Figs. S6a2 and b2). Thus, the defect modes depicted in Fig. S7b3 retain their topological protection. 

 

Fig. S7 Illustration of the SSH structures modified by ANNs. (a1) shows the standard trivial SSH structure 

with fixed coupling coefficients 𝑡𝑡intra = 3.6969 and 𝑡𝑡inter = 2.6505 (far left column), and its corresponding 

eigenvalue with nonlinear dispersion. The yellow box illustrates the unit-cell. (a2) shows the continuous 

modification of the trivial finite SSH lattice without gap closing. (a3) shows the trivial SSH structure modified 

by ANNs, resulting in an equal-spaced eigenvalue distribution, for which the coupling coefficients 𝑇𝑇 =[3.2542, 

2.1986, 3.7560, 2.8882, 4.0805, 3.0787, 4.0805, 2.8882, 3.7560, 2.1986, 3.2542] form the lattice from top to 

bottom (far right column). (b1-b3) have the same layout as (a1-a3) but for the nontrivial case. (b1) displays the 

intra-cell and inter-cell couplings, which are 𝑡𝑡intra = 2.4434 and 𝑡𝑡inter = 4.4211, respectively. The modified 

nontrivial SSH structure with coupling arrays 𝑇𝑇 =[ 2.4189, 3.8624, 2.4353, 4.7121, 2.4760, 4.9567, 2.4760, 

4.7121, 2.4353, 3.8624, 2.4189] is shown in (b3). 


